Numerical results for mimetic discretization of Reissner-Mindlin plate problems

نویسندگان

  • Lourenço Beirão da Veiga
  • Carlo Lovadina
  • David Mora
چکیده

A low-order mimetic finite difference (MFD) method for Reissner-Mindlin plate problems is considered. Together with the source problem, the free vibration and the buckling problems are investigated. Details about the scheme implementation are provided, and the numerical results on several different types of meshes are reported.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust BDDC Preconditioners for Reissner-Mindlin Plate Bending Problems and MITC Elements

A Balancing Domain Decomposition Method by Constraints (BDDC) is constructed and analyzed for the Reissner-Mindlin plate bending problem discretized with MITC finite elements. This BDDC algorithm is based on selecting the plate rotations and deflection degrees of freedom at the subdomain vertices as primal continuity constraints. After the implicit elimination of the interior degrees of freedom...

متن کامل

MESH GENERATION FOR hp TYPE FINITE ELEMENT ANALYSIS OF REISSNER-MINDLIN PLATES

Efficient finite element (FE) analyses of Reissner-Mindlin (RM) plate bending problems require a combination of high-order polynomial trial functions (p-extension) and locally refined meshes, or, in short, an hp-extension of the FE method. In the optimal case, exponential rates in the convergence of the error in energy norm can be obtained by such a discretization. This contribution discusses s...

متن کامل

Quasi-uniformity of Bddc Preconditioners for the Mitc Reissner-mindlin Problem

We consider the BDDC preconditioner for Reissner-Mindlin plate problems, discretized with the MITC element, introduced and analyzed in [11]. In that contribution the authors prove that the condition number of the ensuing linear system is independent of the plate thickness and scalable with respect to the mesh. We here prove, in addition, that the BDDC preconditioner of [11] is also quasi-optima...

متن کامل

An Overlapping Domain Decomposition Method for the Reissner-mindlin Plate with the Falk-tu Elements

Abstract. The Reissner-Mindlin plate theory models a thin plate with thickness t. The condition numbers of finite element approximations of this model deteriorate badly as the thickness t of the plate converges to 0. In this paper, we develop an overlapping domain decomposition method for the Reissner-Mindlin plate model discretized by the Falk-Tu elements with the convergence rate which does n...

متن کامل

Least Squares for the Perturbed Stokes Equations and the Reissner-Mindlin Plate

In this paper, we develop two least-squares approaches for the solution of the Stokes equations perturbed by a Laplacian term. (Such perturbed Stokes equations arise from finite element approximations of the Reissner–Mindlin plate.) Both are two-stage algorithms that solve first for the curls of the rotation of the fibers and the solenoidal part of the shear strain, then for the rotation itself...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012